Leamington Raft Race – 2014 – Vanessa’s Return

It’s that time of the year again, the annual Leamington raft race, organised by the Rotary Club of RLS. My team and I had so much fun last year that we decided to go for it again, after making a few upgrades to last years set up.

Van-essa, the van roof come boat has been sitting in my garden since last year but all she really needed was a good clean and a little fibreglass to repair some of the larger holes we picked up at the last race. We prefer to think of Van-essa as a boat that sinks constantly…but predictably. The main issue we were having last year was that the boat did not want to go in a straight line. Primarily I think this was due to the ribs running horizontally along the roof, acting like chinings but in the wrong direction. The boat isn’t much longer than it is wide so this seemed to give it a tendency to veer off course at every given opportunity. To fix this I attached 2 pieces of hardboard (not ideal but cheap) to the bottom of the hull to flatten off the underside, then added some 2×4’s to both stiffen the hull slightly and force the water to flow in the correct direction. This was all screwed up through the hull and in to the inner frame, small screw holes would leak slightly but it was a nice quick way to attached the sheet besides, going quicker would mean less time in the water which would mean less water would make it in to the boat?


This solution clearly worked pretty well, 17mins shaved off of our time for last year an a very respectable 3rd place. The boat seemed a lot easier to steer but perhaps that was just me being optimistic, the sped up footage below makes us look like we are playing a game of Pong to get along the river!

The smaller amount of work on the boat meant that I could focus more time on the trailer! Last years design worked fine but was pretty dangerous and a lot of hard work. I wanted to address both of these issues and fortunately a quick call to Action 21 in Leamington soon saw me with a few steel bike frames to play with.


I am calling this a ‘bicycle pick-up truck’. It has full suspension and 2 front V brakes (plenty of stopping power for the speeds we were achieving). Both bikes are welded together and extended (3 and a bit lengths of chain required per side!), with the steering linked with some rudimentary Ackerman set up. A bed made from 2×4’s and OSB was bolted to the back to give me something to rest the raft on. Not only does this solution allow for 2x the power of my previous design, it is also much more stable and comfortable. We certainly got a lot of great looks cycling it down the parade to the race. Both bikes are set up with a single gear ratio and despite having a lot of chain droop we didn’t drop a chain once!


This year we managed to get some video of the race/eventful journey to it! So here is is in full, my first proper attempt at video editing, thanks to Matt for getting the shots on the way down. If you were a big fan of Van-essa the boat I suggest not watching the final 30 seconds, where she meets her end, sorry all I just can’t keep it in the back garden for another year!

Thanks again to the great team who crewed with me and helped prepare the boat for race, we will be back next year with a much faster design to hopefully take home gold.

Globetrotter Tandem Restoration Project – Bottom Bracket Fun and Finishing Up

It has been some time now since I purchased my 1973 French Tandem. This great find on ebay was supposed to be a quick restoration project however, the project quickly got out of hand when I realised the bikes origin. Old French parts are now hard to come by and pretty much the entire bike required some form of TLC. So began a full rebuild/conversion to more modern components.

First problem I found was the wheels. Though I loved the idea of using the original wheels complete with hub brakes (often used on tandem bicycles during long descents to avoid heating the rims and exploding tyres!) these were old steel walled jobbies, no way near as good a braking surface as more modern rims. The hubs also needed a serious service and some spokes needed replacing. On top of all of this they were an odd size wheel which makes buying modern tyres more difficult. £45 picked me up a used but good Rigida Sputnik 700C wheelset, nice strong rims with shimano disc hubs, these fit the frame despite the slight change in diameter.

The new wheels meant I had to change the front fork. This was also convenient as the headset from the original bike was beyond repair, and finding one that would accept the old fork steering tube seemed impossible. A 700C steel fork was found with cantilever brake mounts that would fit a modern threadless headset. Conveniently a modern 1-1/8th threadless headset fits perfectly into this frame, finally a part of this build that seems to be on my side! I found a set of cantilever brakes taken from my touring bike and fitted these as the primary stopping power. A quick bit of welding on the rear of the frame has resulted in a disc brake mount for the rear wheel, I will use this at some point if I find that the rim brakes aren’t giving enough stopping power for 2 riders descending.


The main issue I had with the frame was the bottom brackets. Both of the existing units were totally unusable and finding new units to fit the existing frame threads was proving difficult. Some research uncovered some options such as re-tapping and using an Italian threaded design. Other options were to use special brackets that don’t utilise the threads in the frame at all and instead just fasten in 2 parts to each other (like a nut and bolt but with a bottom bracket inside). All of these options were prohibitively expensive, especially when you consider that the rear bottom bracket on a tandem is known to take a bit of a beating and requires more regular replacement.

To get around my bottom bracket issue I decided to cut the old shell out and weld in a new shell that would accept a threaded English bottom bracket. Perhaps not the neatest solution but certainly cheap at just over £6 for each pre threaded steel shell. The front bottom bracket was fairly easy to accommodate, due to it being an elliptical type set up that is pinch bolted by the frame. This allows the sync chain to be tensioned by rotating the elliptic bottom bracket and bolting the gap closed. Some 5mm sheet steel was cut and welded in place to fashion my own version of what the frame came with, only this time with a nice modern thread.


The rear bottom bracket was slightly more of an issue. Care was taken in cutting out the existing shell and then perfectly lining up the new shell in place. This is a highly stressed area on the frame and I wanted to make a neat job of the welding. Some chooking later and the frame is back in one piece, only this time with a modern thread.


The frame and new fork were then sprayed with some Rustoleum using my HVLP spray gun in a rudimentary booth outside, the finish isn’t fantastic but it is certainly a tough coating, ideal for this build. I built the bike up using new cables and some spare parts I had from various other builds. I am pleased with the end result but I am still not used to riding on the back, the lack of control you feel as a stoker is something I will have to learn to love.

We then tried to ride the tandem solo, from the back. here is a video of my house mate Ben attempting the fairly uncomfortable ride.

Globetrotter Tandem Restoration Project

Like all good engineers I like to have too many projects on at any one time. In the true spirit of this I have picked myself up another one! After this years L2B bike ride a friend and I decided we HAD to do the event next year on a tandem bicycle. The idea has lay dormant for a few weeks until I saw a stunning tandem bicycle come up on ebay for a reasonable price and close to my house. A quick bid later and I am now the proud owner of a Globetrotter Tandem bicycle.

Globetrotter tandem

The bike is in need of some work but hey, I wouldn’t enjoy riding it as much unless I had built some bits of it myself. So the project begins.

I have started by completely stripping the bike down. It will be sandblasted then I can give it a quick lick of paint. In doing this I have noticed that I am going to start having some problems dragging this tandem in to the 21st century. Both bottom brackets are in poor condition as is the headset. The worry now is that everything on the bike seems to be strange old French standards, unlike the classic 1″ threaded headsets and cartridge bottom brackets I have become used to.

So this is as far as I have got so far and I am already sensing the project will spiral out of control (instead of being a simple resto). Nevermind! I will keep you updated as things come together.

Leamington Raft Race

Recently some friends and I decided to enter the Leamington Spa Rotary Club Raft Race. With a few weeks to go we were still struggling to source some kind of buoyancy we could easily get a hold of for free. Eventually this led to the realisation that the roof from a van would make a perfect boat, all we needed was a roof. A quick call later and we had secured one (nice work Robin and the guys at Truck Busters), and that Friday we went equipped with angle grinders and a large trailer.

After scouring the lot we settled on a lovely white LDV convoy. This had the advantage of the side door not interfering with the roof (one less hole to fill), a high roof line and, most importantly, it was fibreglass so wouldn’t be too heavy for us to move around. An hour or so later and we were done.


Some cutting and re-welding was done to remove as must rust/weight as possible. Shawn and I then cut a piece of 6mm ply to make a stern (where the rear doors went). This was sealed on with silicon sealant and screwed in to the metal frame around the back. Although this mostly held water out during testing we later added some ‘sticks like shi*t’ to fully seal the joint.


A floor was added to spread the load of the 9 occupants of the raft across the fibreglass, then decoration was all that we required to be ready for the race. This lead to the problem of how to move a 4m long and 1.8m wide ‘boat’ 2 miles down to the river. None of us owned a big enough car trailer and it was too big to go on to my roof rack.

Enter the Bike Trailer

In the UK there are plenty or laws about towing by car. However, I could find fairly little relating specifically to towing by bike (note: this does not guarantee this is legal). A giant trailer could double up as a launch for our boat and be towed, albiet slowly, behind my mountain bike. Fortunately I had some spare steel left over from our Ambulance Adventure so I managed to whip together a bike trailer fairly quickly.


This thing is huge. Brakes have been added but with such length on the cable (over 4m) I struggle to achieve any actuation with all the cable stretch and outer flex. As a result the brakes are set so they are permanently on very slightly. Due to the weight of this thing (I estimate around 90kg) the constant rubbing of the brakes just about keeps the trailer in control, believe me I tried without.

This was just a quick project to get the boat to and from the race and we had some great comments about it, despite being in the way a LOT on the road. Despite how quickly it came together it has survived around 12 road miles with the boat on the back, going up and downhill through Leamington town centre. The next iteration will probably have servo actuated brakes and I will get rid of the camber on the front wheel.


We had a lot of fun with the race and ended up coming 4th out of 15 rafts. We also managed to raise some money for Help for Heroes, and we are still collecting on justgiving if you are feeling generous. Hopefully a race video is still to come.

eCumbent – Welding Begins

This post is a little late in coming and the eCumbent trike is now a lot further along in development, as usual I find myself forever playing catchup.

The first step was to harvest some donor bikes for parts and build the rear forks. Every time I use my chop saw on steel I realise just how useful it is, this thing cuts through so easily and saves me from hacksaw hell. The forks were jigged up and some axle holding tabs fabricated to hold the wheel in place. These have been made from much thicker (5mm) steel plate: heavy but they should hold down the torque provided by the rear hub motor that I plan to add.


Once the fork came together I started building the spine of the frame. The pictures below show a crude setup using toolboxes of convenient heights to get the frame geometry correct to the plans. It took several attempts to get the spine of the frame true. After using a myriad of distinctly average measurement techniques I eventually settled on a set of tack welds I was happy with and managed to weld the spine together.

I also received the components to build my front wheels, 20″ with 20mm axles. I haven’t laced wheels in a while and the small rims with 3cross lacing proved a challenge but as always it all pulled true in the end. Lacing wheels is a very therapeutic part of building a bike and I would recommend it to anyone who has some level of patience.


More progress to come.

Nexus 4 Bike Mount – Review/Modifications

So I recently upgraded my phone to googles flagship the Nexus 4. So far a great phone, the only problem is that I couldn’t find a dedicated phone mount for a bicycle. Now my previous phone (Galax S2) had a dedicated mount, which I loved. It keeps the phone away from rain and is very robust, allowing me to use maps on my phone easily when I go cycle touring.

Although I couldn’t find a Nexus 4 specific mount for my phone I did find a mount of the same brand I had used before for the s3 here. Now the s3 and the Nexus 4 are pretty similar in size so would it work? A quick bit of ‘internetting’ prooved that yes it might well do, 2 days and £30 later and I had one on my desk ready to play.


So a quick review. The mount seems to have all the nice features of my older S2 mount and includes some improvements. Although the volume buttons are no longer accessible the headphone socket is. There is also an option to add a ‘charge pack’ and even though I didn’t buy this version you can see the connections are still included inside (these lead to the outside via 2 pads on the back of the mount); perhaps I will add an external USB plug at a later date using this breakout. The mount is also far more secure thanks to an updated click and lock system that uses a small bolt with finger friendly tightening nob to really give you piece of mind that the device in case can’t separate from the part that attaches to the bike. The catches on the outside are also even more robust than my previous mount. Overall I am pretty pleased with it.

Will it fit a Nexus 4? Short answer, yes. The device fits (physically) inside perfectly. Deatails:

  • Headphone port, the phones port is slightly far left. No worries for me as I don’t listen to music while riding though an external speaker may make an appearance for me at a later date. There is enough room before the hinge to drill a new hole for headphones if required.
  • Cameras, both seem to be in the correct places (clear windows on the case). winner!
  • Charge port, although my mount doesn’t have the built in battery pack it seems there would be room to accommodate a USB plug within the case, good for a future modification i think.
  • Power button. Now this is my biggest problem, the button on the Nexus 4 is around 10mm higher than that of the S3. Now I believe there is a way to have the phone come out of sleep with a special screen swipe (root and special app required), but I didn’t want to use this method. I came up with the below modification to solve this.

To modify the power button for a Nexus 4. I have carved out some of the rubber holder using a stanley blade. Then cut down some sheet steel to act as a lever from the intended power button. This is all secured in place with a drop of super-glue and a small run of black tape. The hardest part of this was to get the metal bent correctly to accurate the power button when the phone is sealed in (lid closed and clamped shut). Due to the small throw of the power button on the Nexus 4 it was easy to accidentally press this simply by closing the case. Once working correctly though it seems reliable.


So far it is working out well on the desk. Will keep progress updated as I put some miles on it.

eCumbent – Intro

In September 2012 I began my first ‘grown up’ job role as a Graduate Engineer for Jaguar Land Rover. At 8 miles away I really should be cycling to work throughout the year but in cold weather the car is just too tempting. In an attempt to solve this problem by getting to work faster (less time in the cold) and have some fun at the same time I decided to build myself an electric bike.

For a long time I have wanted to build and ride my own bike from scratch, specifically a recumbent. Since I have never built a bike before I did some research and quickly found the joy of Atomic Zombie. ~£15 later and I had downloaded the plans for an Atomic Zombie Warrior Trike. I went for the trike for a few reasons:

  • More stable for a first time recumbent rider, especially when combined with electric power
  • Potential to more easily add fairings to the trike (to aid the cold winter rides)
  • Stable at low speeds will make the trike an ideal trailer towing vehicle

After buying some steel and borrowing a work mate’s welder (thanks Robin!) I got to work. I can’t go in to too much detail with the actual dimensions/build of the trike, if you want this go buy the plans (trust me, they are worth the money). Some build photos to come in my next post as well as some details on my electric conversion system.